(资料图)

1、换底公式 log(a)(N)=log(b)(N) / log(b)(a) 推导如下: N = a^[log(a)(N)] a = b^[log(b)(a)] 综合两式可得 N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]} 又因为N=b^[log(b)(N)] 所以 b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]} 所以 log(b)(N) = [log(a)(N)]*[log(b)(a)] 所以log(a)(N)=log(b)(N) / log(b)(a)。

本文到此分享完毕,希望对大家有所帮助。

推荐内容